Robustness of Deep Learning Models for Vision Tasks
نویسندگان
چکیده
In recent years, artificial intelligence technologies in vision tasks have gradually begun to be applied the physical world, proving they are vulnerable adversarial attacks. Thus, importance of improving robustness against attacks has emerged as an urgent issue tasks. This article aims provide a historical summary evolution and defense methods on CNN-based models also introduces studies focusing brain-inspired that mimic visual cortex, which is resistant As origination CNN was application physiological findings related cortex time, new opportunity create more robust The authors hope this review will promote interest progress artificially intelligent security by deep learning for
منابع مشابه
A Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملEfficient Method Based on Combination of Deep Learning Models for Sentiment Analysis of Text
People's opinions about a specific concept are considered as one of the most important textual data that are available on the web. However, finding and monitoring web pages containing these comments and extracting valuable information from them is very difficult. In this regard, developing automatic sentiment analysis systems that can extract opinions and express their intellectual process has ...
متن کاملOn Vectorization of Deep Convolutional Neural Networks for Vision Tasks
We recently have witnessed many ground-breaking results in machine learning and computer vision, generated by using deep convolutional neural networks (CNN). While the success mainly stems from the large volume of training data and the deep network architectures, the vector processing hardware (e.g. GPU) undisputedly plays a vital role in modern CNN implementations to support massive computatio...
متن کاملEnsemble Robustness of Deep Learning Algorithms
The question why deep learning algorithms perform so well in practice has puzzled machine learning theoreticians and practitioners alike. However, most of well-established approaches, such as hypothesis capacity, robustness or sparseness, have not provided complete explanations, due to the high complexity of the deep learning algorithms and their inherent randomness. In this work, we introduce ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2023
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app13074422